

March 24, 2016

Mr. Larry Wyeno
Public Works & Natural Resources
385 Kimbark Street
Longmont, Colorado 80501

Telephone: (303) 651-8628
E-mail: larry.wyeno@longmontcolorado.gov

Re: Limited Environmental Site Investigation Addendum Letter
Ute Highway Water Treatment Plant
4651 & 4652 Ute Highway
Boulder County, Colorado
Terracon Project No. 22157002

Dear Mr. Wyeno:

Terracon Consultants, Inc. (Terracon) is pleased to submit this Addendum Letter to supplement the findings of the Limited Site Investigation (LSI) report prepared by Terracon, dated (LSI 2016). The letter presents data from recent field activities that included the collection of groundwater samples for chemical analysis. The activities were performed to prepare a Colorado Department of Public Health and Environment (CDPHE) State of Colorado Voluntary Clean-up Program (VCUP) Application (Application) for the Ute Highway Water Treatment plant located at the above referenced locations. The intent of the Application is to determine what further action, if any, may be required at the subject property in order to receive a No Action Determination (NAD) ("Comfort Letter") from the CDPHE. Terracon conducted the site activities in general accordance with our proposal (P20150225) dated January 6, 2016.

1.0 BACKGROUND

Terracon (Craig Nelson), along with City of Longmont representative Larry Wyeno, met with CDPHE on March 1, 2016 in regards to the February 15, 2016 LSI report findings at the Ute Water Treatment Plant. The meeting was scheduled to discuss the elevated levels of metals reported in groundwater samples from the January 2016 sampling event. Due to the unusually high levels of metals reported in groundwater samples collected during the January 2016 sampling event, CDPHE recommend re-sampling the on-site groundwater wells to confirm the previous laboratory results.

2.0 FIELD INVESTIGATION

On March 4, 2016, a Terracon field engineer sampled seven on-site groundwater monitoring wells utilizing low-flow technologies to minimize the disturbance of silt and other sediments at the

bottom of the wells. Terracon collected one duplicate (B-8-D) sample for quality assurance (QA) purposes to be sent to a separate laboratory for testing. The samples collected were analyzed for RCRA 8 Metals (dissolved) by EPA method 6010. Groundwater samples were collected and placed into laboratory prepared containers, labeled, and stored on ice in a cooler for delivery to the laboratories. The samples and completed chain-of custody forms were shipped to ESC Lab Sciences (ESC) in Mount Juliet, TN, for laboratory analysis. The duplicate groundwater sample was taken to eAnalytics Laboratory in Loveland, CO for QA laboratory analysis.

3.0 RESULTS

The reported concentrations of RCRA 8 Metals did not exceed applicable cleanup levels established by the CDPHE Groundwater Protection Values Soil Cleanup Table, Water Standard dated March 2014, or the EPA RSL Summary Table Maximum Contaminant Level (MCL) dated November 2015. Laboratory analytical reports for this groundwater sampling event are included as an attachment to this letter. A summary of the March 2016 groundwater analytical results for RCRA 8 Metals are presented below.

Summary of Groundwater Analytical Results – RCRA 8 Metals

Sample ID	Sample Date	Mercury (µg/l)	Arsenic (µg/l)	Barium (µg/l)	Cadmium (µg/l)	Chromium (µg/l)	Lead (µg/l)	Selenium (µg/l)	Silver (µg/l)
B-1	3/4/2016	<0.049	<6.5	282	<0.7	<1.4	4.37	<7.4	<2.8
B-2	3/4/2016	<0.049	<6.5	220	<0.7	<1.4	5.09	<7.4	<2.8
B-3	3/4/2016	<0.049	<6.5	34.2	<0.7	<1.4	5.73	<7.4	<2.8
B-4	3/4/2016	<0.049	<6.5	296	<0.7	<1.4	4.12	<7.4	<2.8
B-6	3/4/2016	<0.049	<6.5	70.7	<0.7	<1.4	5.62	<7.4	<2.8
B-7	3/4/2016	<0.049	<6.5	67.3	<0.7	<1.4	5.20	<7.4	<2.8
B-8	3/4/2016	<0.049	<6.5	152	<0.7	<1.4	4.23	<7.4	<2.8
B-8-D	3/4/2016	<4.0	<10	114	<5	<3	<3	<5	<5
CGS Standard		2	10	2,000	5	100	50	20	50
MCL Standard		2	10	2,000	5	100	15	50	NS

NS = No cleanup level specified

CGS Standard = Groundwater Protection Values Soil Cleanup Table, Water Standard, dated March 2014

MCL Standard = EPA RSL Summary Table (TR=1E-6, HQ=1), MCL dated November 2015

µg/l = Micrograms per liter

4.0 GENERAL COMMENTS

The groundwater laboratory analytical results indicate that Colorado Groundwater Standards have not been exceeded and that no further action is required and support the No Action Determination request.

Limited Site Investigation

Ute Highway Water Treatment Plant ■ Longmont, Colorado

March 24, 2016 ■ Terracon Project No. 22157002

The results, findings and recommendations provided in this letter are based solely on the conditions which were observed during the on-site activities and the information reviewed by Terracon. No warranties or representations, expressed or implied, are made as to the condition of the site beyond that observed by Terracon during the site activities.

Terracon appreciates this opportunity to provide environmental engineering services to the City of Longmont. Should you have any questions or require additional information, please do not hesitate to contact our office.

Sincerely,
Terracon Consultants, Inc.

Craig L. Nelson
Staff Geologist

Lawrence R. Keefe
Principal

Attachments: Laboratory Analytical Reports

March 09, 2016

Terracon - Fort Collins

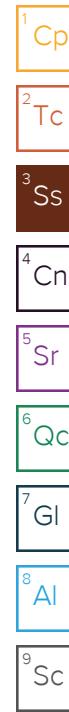
Sample Delivery Group: L821793
Samples Received: 03/05/2016
Project Number: 22157002
Description: Ute WTP

Report To: Craig Nelson
1901 Sharp Point Drive, Ste C
Fort Collins, CO 80525

Entire Report Reviewed By:

Daphne Richards
Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.


¹ Cp: Cover Page	1	¹ Cp
² Tc: Table of Contents	2	² Tc
³ Ss: Sample Summary	3	³ Ss
⁴ Cn: Case Narrative	4	⁴ Cn
⁵ Sr: Sample Results	5	⁵ Sr
B-1 L821793-01	5	
B-2 L821793-02	6	
B-3 L821793-03	7	
B-4 L821793-04	8	
B-6 L821793-05	9	
B-7 L821793-06	10	
B-8 L821793-07	11	
⁶ Qc: Quality Control Summary	12	⁶ Qc
Mercury by Method 7470A	12	
Metals (ICP) by Method 6010B	13	
⁷ Gl: Glossary of Terms	14	⁷ Gl
⁸ Al: Accreditations & Locations	15	⁸ Al
⁹ Sc: Chain of Custody	16	⁹ Sc

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

B-1 L821793-01 GW		Collected by Craig Nelson	Collected date/time 03/04/16 08:45	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 16:55
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:12
B-2 L821793-02 GW		Collected by Craig Nelson	Collected date/time 03/04/16 09:15	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:04
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:21
B-3 L821793-03 GW		Collected by Craig Nelson	Collected date/time 03/04/16 09:40	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:07
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:24
B-4 L821793-04 GW		Collected by Craig Nelson	Collected date/time 03/04/16 10:20	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:10
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:27
B-6 L821793-05 GW		Collected by Craig Nelson	Collected date/time 03/04/16 11:10	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:12
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:30
B-7 L821793-06 GW		Collected by Craig Nelson	Collected date/time 03/04/16 11:40	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:15
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:33
B-8 L821793-07 GW		Collected by Craig Nelson	Collected date/time 03/04/16 12:20	Received date/time 03/05/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time
Mercury by Method 7470A	WG854362	1	03/07/16 12:20	03/08/16 17:18
Metals (ICP) by Method 6010B	WG854380	1	03/08/16 10:45	03/08/16 15:36

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Daphne Richards
Technical Service Representative

- ¹ Cp
- ² Tc
- ³ Ss
- ⁴ Cn
- ⁵ Sr
- ⁶ Qc
- ⁷ GI
- ⁸ AI
- ⁹ SC

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 16:55	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:12	WG854380
Barium,Dissolved	0.282		0.00170	0.00500	1	03/08/2016 15:12	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:12	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:12	WG854380
Lead,Dissolved	0.00437	<u>J</u>	0.00190	0.00500	1	03/08/2016 15:12	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:12	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:12	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:04	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:21	WG854380
Barium,Dissolved	0.220		0.00170	0.00500	1	03/08/2016 15:21	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:21	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:21	WG854380
Lead,Dissolved	0.00509		0.00190	0.00500	1	03/08/2016 15:21	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:21	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:21	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:07	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:24	WG854380
Barium,Dissolved	0.0342		0.00170	0.00500	1	03/08/2016 15:24	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:24	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:24	WG854380
Lead,Dissolved	0.00573		0.00190	0.00500	1	03/08/2016 15:24	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:24	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:24	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:10	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:27	WG854380
Barium,Dissolved	0.296		0.00170	0.00500	1	03/08/2016 15:27	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:27	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:27	WG854380
Lead,Dissolved	0.00412	<u>J</u>	0.00190	0.00500	1	03/08/2016 15:27	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:27	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:27	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:12	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:30	WG854380
Barium,Dissolved	0.0707		0.00170	0.00500	1	03/08/2016 15:30	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:30	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:30	WG854380
Lead,Dissolved	0.00562		0.00190	0.00500	1	03/08/2016 15:30	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:30	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:30	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:15	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:33	WG854380
Barium,Dissolved	0.0673		0.00170	0.00500	1	03/08/2016 15:33	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:33	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:33	WG854380
Lead,Dissolved	0.00520		0.00190	0.00500	1	03/08/2016 15:33	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:33	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:33	WG854380

Mercury by Method 7470A

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Mercury,Dissolved	U		0.0000490	0.000200	1	03/08/2016 17:18	WG854362

¹ Cp² Tc³ Ss⁴ Cn⁵ Sr⁶ Qc⁷ Gl⁸ Al⁹ Sc

Metals (ICP) by Method 6010B

Analyte	Result mg/l	Qualifier	MDL mg/l	RDL mg/l	Dilution	Analysis date / time	Batch
Arsenic,Dissolved	U		0.00650	0.0100	1	03/08/2016 15:36	WG854380
Barium,Dissolved	0.152		0.00170	0.00500	1	03/08/2016 15:36	WG854380
Cadmium,Dissolved	U		0.000700	0.00200	1	03/08/2016 15:36	WG854380
Chromium,Dissolved	U		0.00140	0.0100	1	03/08/2016 15:36	WG854380
Lead,Dissolved	0.00423	<u>J</u>	0.00190	0.00500	1	03/08/2016 15:36	WG854380
Selenium,Dissolved	U		0.00740	0.0100	1	03/08/2016 15:36	WG854380
Silver,Dissolved	U		0.00280	0.00500	1	03/08/2016 15:36	WG854380

L821793-01,02,03,04,05,06,07

Method Blank (MB)

(MB) 03/08/16 16:16

Analyst	MB Result mg/l	<u>MB Qualifier</u>	MB MDL mg/l	MB RDL mg/l
Mercury,Dissolved	U		0.000049	0.000200

¹Cp²Tc³Ss⁴Cn⁵Sr⁶Qc⁷Gl⁸Al⁹Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/08/16 16:19 • (LCSD) 03/08/16 16:28

Analyst	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits %	<u>LCS Qualifier</u>	<u>LCSD Qualifier</u>	RPD %	RPD Limits %
Mercury,Dissolved	0.00300	0.00332	0.00332	111	111	80-120			0	20

L821758-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 03/08/16 16:31 • (MS) 03/08/16 16:34 • (MSD) 03/08/16 16:37

Analyst	Spike Amount mg/l	Original Result mg/l	MS Result mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	<u>MS Qualifier</u>	<u>MSD Qualifier</u>	RPD %	RPD Limits %
Mercury,Dissolved	0.00300	0.000218	0.00274	0.00271	84	83	1	75-125			1	20

Method Blank (MB)

(MB) 03/08/16 14:10

Analyte	MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l
Arsenic,Dissolved	U		0.0065	0.0100
Barium,Dissolved	U		0.0017	0.00500
Cadmium,Dissolved	U		0.0007	0.00200
Chromium,Dissolved	U		0.0014	0.0100
Lead,Dissolved	U		0.0019	0.00500
Selenium,Dissolved	U		0.0074	0.0100
Silver,Dissolved	U		0.0028	0.00500

¹Cp²Tc³Ss⁴Cn⁵Sr⁶Qc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/08/16 14:13 • (LCSD) 03/08/16 14:16

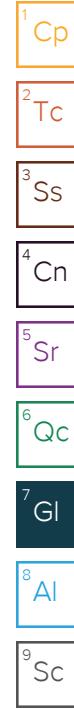
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Arsenic,Dissolved	1.00	1.07	1.06	107	106	80-120			0	20
Barium,Dissolved	1.00	1.07	1.06	107	106	80-120			0	20
Cadmium,Dissolved	1.00	1.07	1.07	107	107	80-120			0	20
Chromium,Dissolved	1.00	1.01	1.01	101	101	80-120			0	20
Lead,Dissolved	1.00	1.05	1.05	105	105	80-120			0	20
Selenium,Dissolved	1.00	1.11	1.11	111	111	80-120			0	20
Silver,Dissolved	1.00	1.02	1.02	102	102	80-120			0	20

⁷Gl⁸Al⁹Sc

L821760-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 03/08/16 14:19 • (MS) 03/08/16 14:24 • (MSD) 03/08/16 14:27

Analyte	Spike Amount mg/l	Original Result mg/l	MS Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Arsenic,Dissolved	1.00	0.0166	1.15	1.09	113	107	1	75-125		5	20
Barium,Dissolved	1.00	0.108	1.20	1.15	110	104	1	75-125		5	20
Cadmium,Dissolved	1.00	ND	1.13	1.07	113	107	1	75-125		5	20
Chromium,Dissolved	1.00	0.000287	1.02	0.992	102	99	1	75-125		2	20
Lead,Dissolved	1.00	0.0105	1.10	1.05	109	104	1	75-125		5	20
Selenium,Dissolved	1.00	0.00550	1.19	1.14	119	113	1	75-125		5	20
Silver,Dissolved	1.00	ND	1.06	1.02	106	102	1	75-125		3	20



Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier Description

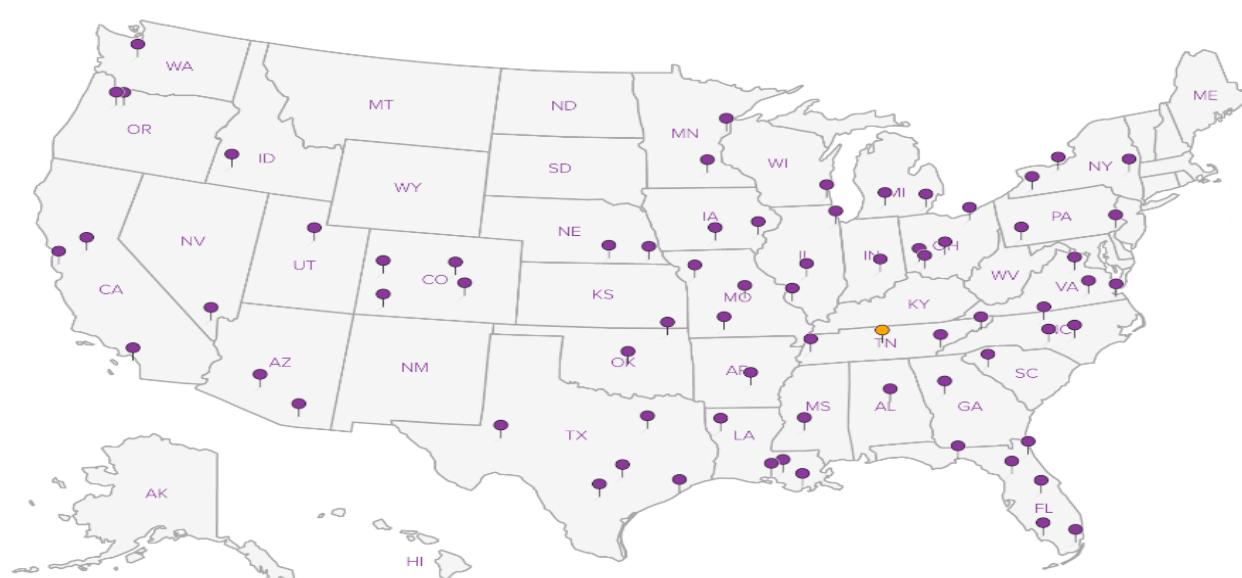
J	The identification of the analyte is acceptable; the reported value is an estimate.
---	---

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey—NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Connecticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio—VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee ¹⁴	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE OS 15, 05		


Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA – Crypto	TN00002		

¹ Drinking Water, ² Underground Storage Tanks, ³ Aquatic Toxicity, ⁴ Chemical/Microbiological, ⁵ Mold, ^{6/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. [ESC Lab Sciences performs all testing at our central laboratory.](#)

L-A-B S-C-I-E-N-C-E-S
12065 Lebanon Road
Mt. Juliet, TN 37122

Phone: (800) 767-5859
Phone: (615) 758-5858
Fax: (615) 758-5859

H130

Company Name/Address:

Terracor Consultants, Inc.
1901 Sharp Point Drive, Suite C
Fort Collins, CO 80525

Billing Information:

Report to: Craig Nelson

Email to: Craig.Nelson@terracon.com

City/Sate
Collected

Project
Description: Ute Water Treatment Plant

Phone: 970-484-0359

FAX:

Collected by: (print) Craig Nelson

Collected by (signature):

Immediately
Packed on Ice N Y X

Sample ID	Comp/Grab	Matrix*	Depth	Date Results Needed:		No. of Cntrs	RCRA 8 Metals (dissolved)	CoCode	(lab use only)
				Same Day.....	200%				
B-1	Grab	GW		3/4/16	0845	1	X		L821793-9
B-2					0915				-02
B-3					0940				-03
B-4					1020				-04
B-6					1110				-05
B-7					1140				-06
B-8					1220				-07

*Matrix: SS - Soil/Solid GW - Groundwater WW - WasteWater DW - Drinking Water OT - Other

Remarks: Lab filter / Report detection limits in MDL

Relinquished by: (Signature)	Date: 3/4/16	Time: 1600	Received by: (Signature)	Samples returned via: <input type="checkbox"/> UPS <input type="checkbox"/> FedEx <input type="checkbox"/> Courier <input type="checkbox"/>	Condition: <input checked="" type="checkbox"/> Intact	(lab use only)
Relinquished by: (Signature)	Date:	Time:	Received by: (Signature)	Temp: 27	Bottles Received: 7-10	CoC Seals Intact <input type="checkbox"/> Y <input type="checkbox"/> N <input type="checkbox"/> NA
Relinquished by: (Signature)	Date:	Time:	Received for lab by: (Signature)	Date: 3/5/16	Time: 0900	pH Checked: <input type="checkbox"/> NCF: <input type="checkbox"/>

6617 3613 1423

Test Report

March 9, 2016

Client: Terracon Consultants

Project: Ute Water Treatment Plant

Lab ID: 4755

Date Samples Received: 3/4/2016

Number of Samples: 1

Sample Condition: Samples arrived intact and in appropriate sample containers

Sample Temperature: Samples arrived within the acceptable temperature range as specified in the test method

Comments:

Thank you for allowing eAnalytics Laboratory to provide laboratory services for you.

A handwritten signature in black ink, appearing to read "Chris Dieken".

Christopher Dieken
Quality Assurance Manager

A handwritten signature in black ink, appearing to read "Todd Rhea".

Todd Rhea
Laboratory Manager

eAnalytics Laboratory
4130 Clydesdale Parkway Loveland CO 80538

Chain of Custody

eANALYTICS

LABORATORY

Chain of Custody Form

eANALYTICS LABORATORY			Phone: (970) 667-6975		Fax: (970) 669-0941		www.eAnalyticsLab.com		
1767 Rocky Mountain Avenue Loveland CO 80538									
CLIENT INFORMATION (*New Clients please fill out completely)			ANALYSIS INFORMATION (Select analysis by checking box on corresponding sample line)						
Company: Terracon Consultants, Inc Project: Ute Water Treatment Plant Project Manager: Craig Nelson Sampler: Craig Nelson Phone/Email: 970.484.0359 / craig.nelson@terracon.com Address: 1901 Sharp Point Dr, Suite C Fort Collins, CO 80525			Number of Contaminants Matrix (S) Soil (W) Water (V) Vapor (O) Other RC 24.8 Metals (dissolved)						Other Instructions
Lab ID	Sample Name	Sampling Date/Time	AM / PM	AM / PM	AM / PM	AM / PM	AM / PM	AM / PM	
1	B-8-D	3/4/16 12:00 AM	X						

Comments: Lab filter / report detection limits as low as possible (MDL)

Turnaround Time (Business Days)			Record of Custody		
TAT begins when sample is received by eANALYTICS			Date 3/4/16		
<input checked="" type="checkbox"/> Normal (5-10 Days) <input type="radio"/> 3 Day (25%) <input type="radio"/> 2 Day (50%) <input type="radio"/> 1 Day (100%) <input type="radio"/> Same Day (300%)			Rush analysis requires an extra charge. If possible please inform eANALYTICS in advance for rush analysis.		
Colorado OPS Project :			Relinquished by: Craig Nelson Company: Terracon		
For eANALYTICS Use			Received by: Company:		
Samples Received Intact: Received Within Temperature Range (2-6°C): Sample Preservative: <input type="radio"/> Ice <input type="radio"/> None			Relinquished by: Company: Received by: Todd <input type="radio"/> eANALYTICS		
			Date 3/4/16 Time 12:00 AM / PM Date Time AM / PM		
			Date 3/4/16 Time 12:00 AM / PM Date Time AM / PM		

WO # 4755

eANALYTICS: Environmental testing made Easy

Page 1 of 1

eAnalytics Laboratory
 4130 Clydesdale Parkway Loveland CO 80538

eANALYTICS
L A B O R A T O R Y

Client: Terracon Consultants Lab ID: 4755
Project: Ute Water Treatment Plant
Analysis: Dissolved RCRA8 Metals Method: EPA6010C/7470A/7471B

Sample Name	Ag - Silver	As - Arsenic	Ba - Barium	Cd - Cadmium	Cr - Chromium	Hg - Mercury	Pb - Lead	Se - Selenium	Date Sampled	Date Analyzed	Lab ID
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			
B-8-D	< 0.005	< 0.010	0.114	< 0.005	< 0.003	< 0.004	< 0.003	< 0.005	03/04/16	03/08/16	4755 1